跳到主要内容
版本:0.13.0

使用自定义调度规则(Sketch Rule)在 CPU 上自动调度稀疏矩阵乘法

备注

单击 此处 下载完整的示例代码

作者Chengfan Jia

本文介绍如何用 auto-scheduler 来调优 CPU 的稀疏矩阵乘法。

auto-scheduler 旨在自动探索给定计算声明的最佳性能调度。有时需要尝试一些特殊的操作,auto-scheduler 的默认调度规则(Sketch Rule)可能不能很好的支持这些操作,会导致性能不佳。auto-scheduler 目前允许用户提供一个 CustomSketch 来覆盖这些情况。

本教程使用稀疏矩阵乘法作为示例,演示如何实现自定义调度规则,并将其插入 auto-scheduler 的搜索策略。

注意,本教程无法在 Windows 或最新版本的 macOS 上运行。如需运行,请将本教程的主体放在 if __name__ == "__main__": 代码块中。

import os
import numpy as np

import tvm
import tvm.testing
from tvm import te, auto_scheduler, runtime, topi
from tvm.auto_scheduler import _ffi_api
from tvm.topi.utils import get_const_tuple
from tvm.topi.sparse.utils import random_bsr_matrix

定义计算

首先用几个 relu 和 bias 相加来定义一个稀疏 matmul 的计算,该函数返回输入/输出张量列表,auto-scheduler 可以从这些张量中得到整个计算图。

@auto_scheduler.register_workload
def sparse_dense(M, N, K, w_data_shape, w_indices_shape, w_indptr_shape, dtype):
X = te.placeholder(shape=(M, K), dtype=dtype)
W_data = te.placeholder(shape=w_data_shape, dtype=dtype)
W_indices = te.placeholder(shape=w_indices_shape, dtype="int32")
W_indptr = te.placeholder(shape=w_indptr_shape, dtype="int32")
B = te.placeholder(shape=(M, N), dtype=dtype)

out = topi.nn.sparse_dense(topi.nn.relu(X), W_data, W_indices, W_indptr)
out = te.compute((M, N), lambda i, j: out[i, j] + B[i, j], name="BiasAdd")
out = topi.nn.relu(out)

return [X, W_data, W_indices, W_indptr, B, out]

稀疏工作负载(sparse workload)的特殊步骤

在调度调优期间,auto-scheduler 使用随机输入来测试生成的调度的性能。虽然不能直接使用随机数组作为稀疏运算的输入,但「indices」和「indptr」数组对于计算很有用。

为解决这个问题,将它们注册为特殊的 buffer,然后在测试程序时加载。更多详细信息,参阅 tvm.auto_scheduler.measure.py

# 定义稀疏计算的基本 shape
M = 128
K = 256
N = 512
BS_R = 16
BS_C = 1
density = 0.6

# 用 numpy 生成测试数据
X_np = np.random.randn(M, K).astype("float32")
X_np = np.maximum(np.zeros((M, K), dtype="float32"), X_np) # Relu
W_sp_np = random_bsr_matrix(N, K, BS_R, BS_C, density=density, dtype="float32")
W_np = W_sp_np.todense()
Y_np = X_np @ W_np.T # 处理矩阵乘法
B_np = np.random.randn(M, N).astype("float32")
Y_np = Y_np + B_np # Bias add
Y_np = np.maximum(np.zeros((M, N), dtype="float32"), Y_np) # Relu

创建搜索任务

接下来创建一个搜索任务 M=N=K=512,dtype=「float32」。如果你的机器支持 avx 指令,你可以:

  • 将下面的「llvm」替换为「llvm -mcpu=core-avx2」来启用 AVX2
  • 将下面的「llvm」替换为「llvm -mcpu=skylake-avx512」来启用 AVX-512
target = tvm.target.Target("llvm")

# 将稀疏数据注册到任务输入
prefix = "sparse_dense_bsr_%d_%d_%d_%d_%d_%d_" % (
N,
K,
BS_R,
BS_C,
W_sp_np.indices.shape[0],
W_sp_np.indptr.shape[0],
)
task = tvm.auto_scheduler.SearchTask(
func=sparse_dense,
args=(M, N, K, W_sp_np.data.shape, W_sp_np.indices.shape, W_sp_np.indptr.shape, "float32"),
target=target,
task_inputs={
prefix + "W_data": runtime.ndarray.array(W_sp_np.data),
prefix + "W_indices": runtime.ndarray.array(W_sp_np.indices),
prefix + "W_indptr": runtime.ndarray.array(W_sp_np.indptr),
},
task_inputs_save_to_file=True,
)

# 检查计算图
print("Computational DAG:")
print(task.compute_dag)

输出结果:

Computational DAG:
placeholder = PLACEHOLDER [33]
placeholder = PLACEHOLDER [4916, 16, 1]
placeholder = PLACEHOLDER [4916]
placeholder = PLACEHOLDER [128, 256]
compute(i0, i1) = max(placeholder[i0, i1], 0f)
compute(i, nb_j, j) += (placeholder[(placeholder[nb_j] + elem_idx), j, c]*compute[i, (placeholder[(placeholder[nb_j] + elem_idx)] + c)])
compute(m, n) = compute[m, floordiv(n, 16), floormod(n, 16)]
placeholder = PLACEHOLDER [128, 512]
BiasAdd(i, j) = (compute[i, j] + placeholder[i, j])
compute(i0, i1) = max(BiasAdd[i0, i1], 0f)

为稀疏密集算子(sparse dense op)编写自定义草图(sketch)

在调优之前,需要为稀疏密集操作定义 CustomSketchRule。

CustomSketchRule 由两部分组成:条件函数和应用函数。

  • 条件函数:描述应用此调度规则的时间。例如,通过匹配名称和标签将规则应用于稀疏操作。
  • 应用函数:描述生成初始草图的方式。可以用 auto-scheduler 提供的循环状态 API 来实现。
def meet_condition_func(search_policy, state, stage_id):
state = auto_scheduler.loop_state.State(state, search_policy.search_task.compute_dag)
if state.stages[stage_id].op.tag in [
"sparse_dense_sp_rhs_bsrmm",
"sparse_dense_sp_rhs_bsrmm_block",
]:
return auto_scheduler.PreloadCustomSketchRule.APPLY_AND_SKIP_REST
else:
return auto_scheduler.PreloadCustomSketchRule.PASS

def apply_func(search_policy, state, stage_id):
ret = []
s0 = auto_scheduler.loop_state.State(state, search_policy.search_task.compute_dag)
if s0.stages[stage_id].op.tag == "sparse_dense_sp_rhs_bsrmm_block":
return [s0.state_object, stage_id - 1]

sparse_dense = s0.stages[stage_id].op
sparse_dense_block = s0.stages[stage_id - 1].op
assert sparse_dense.tag == "sparse_dense_sp_rhs_bsrmm"
assert sparse_dense_block.tag == "sparse_dense_sp_rhs_bsrmm_block"

# 设置计算块的默认消费者
consumer = sparse_dense

# 若稀疏密集有单个元素消费者
# 可以计算内联稀疏密集输出阶段
consumers = _ffi_api.SearchPolicyUtilsGetConsumers(
search_policy.search_task, s0.state_object, stage_id
)
if len(consumers) == 1:
consumer_id = int(consumers.items()[0][0])
if _ffi_api.SearchPolicyUtilsIsElementwiseMatch(
search_policy.search_task, s0.state_object, stage_id, consumer_id
):
consumer = s0.stages[consumer_id].op
s0.compute_inline(sparse_dense)

i, nb_j, j, row_offset, c = s0[sparse_dense_block].iters
m, n = s0[consumer].iters
i0, i1, i2 = s0.split(sparse_dense_block, i, [None, None])
m0, m1 = s0.follow_split(consumer, m, len(s0.transform_steps) - 1, 1)
j0, j1 = s0.split(sparse_dense_block, nb_j, [None])
n0, n1 = s0.follow_split(consumer, n, len(s0.transform_steps) - 1, 1)
s0.reorder(sparse_dense_block, [i0, j0, i1, j1, row_offset, i2, j, c])
s0.reorder(consumer, [m0, n0, m1, n1])
s0.compute_at(sparse_dense_block, consumer, n0)

ret.append([s0.state_object, stage_id - 2])

return ret

接下来,为插入自定义草图的 auto-scheduler 设置参数。

  • num_measure_trials 是搜索过程中可以使用的测试次数(根据自己的时间预算调整这个参数),为快速演示,本教程只进行了 10 次试验。在实践中,推荐使用 1000 以得到收敛结果。
  • 此外,使用 RecordToFile 将测试记录转储到 sparse_dense.json 文件中,测试记录可用于查询历史最佳、恢复搜索以及以后进行更多分析。
  • 有关更多参数,参见 auto_scheduler.TuningOptions
  • 接下来创建一个 auto_scheduler.SketchPolicy 对象,并将自定义调度规则添加为 init_search_callbacks
log_file = "sparse_dense.json"
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=10,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
verbose=2,
)

search_policy = auto_scheduler.SketchPolicy(
task,
program_cost_model=auto_scheduler.XGBModel(),
init_search_callbacks=[
auto_scheduler.PreloadCustomSketchRule(meet_condition_func, apply_func, "SparseDense")
],
)

运行搜索

现在已经准备好所有的输入。接下来开始搜索,经过一些测试后,可以从日志文件中加载最佳调度并应用。


def tune_and_evaluate(tune_option, search_policy):
# 运行自动调优(搜索)
task.tune(tune_option, search_policy)

# 应用最佳 schedule
sch, args = task.apply_best(log_file)

# 自动调度后对 schedule 降级,来查看 IR。auto-scheduler 正确执行优化,包括多级平铺、布局
# 转换、并行化、向量化、展开和算子融合。
print("Lowered TIR:")
print(tvm.lower(sch, args, simple_mode=True))

# 检查正确性并评估性能

# 构建二进制文件,并检查其正确性和性能。

func = tvm.build(sch, args, target)

dev = tvm.cpu()

X_tvm = tvm.nd.array(X_np, device=dev)
W_data_tvm = tvm.nd.array(W_sp_np.data, device=dev)
W_indices_tvm = tvm.nd.array(W_sp_np.indices, device=dev)
W_indptr_tvm = tvm.nd.array(W_sp_np.indptr, device=dev)
B_tvm = tvm.nd.array(B_np, device=dev)
Y_tvm = tvm.nd.empty(Y_np.shape, device=dev)

# 检查结果
tvm.testing.assert_allclose(Y_np, Y_tvm.numpy(), atol=1e-4, rtol=1e-4)

# 评估执行时间。
evaluator = func.time_evaluator(func.entry_name, dev, min_repeat_ms=500)
print(
"Execution time of this operator: %.3f ms"
% (
np.median(
evaluator(X_tvm, W_data_tvm, W_indices_tvm, W_indptr_tvm, B_tvm, Y_tvm).results
)
* 1000
)
)

# 注意: 我们不在服务器上运行调优,因为太花时间,
# 去掉下行注释自行运行
# tune_and_evaluate(tune_option, search_policy)
备注

调优结果示例

----------------------------------------------------------------------
Lowered TIR:
primfn(placeholder_5: handle, placeholder_6: handle, placeholder_7: handle, placeholder_8: handle, placeholder_9: handle, compute_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {placeholder_2: Buffer(placeholder_10: Pointer(float32), float32, [9831, 16, 1], []),
placeholder_4: Buffer(placeholder_11: Pointer(int32), int32, [33], []),
placeholder_3: Buffer(placeholder_12: Pointer(float32), float32, [512, 512], []),
compute: Buffer(compute_2: Pointer(float32), float32, [512, 512], []),
placeholder_1: Buffer(placeholder_13: Pointer(float32), float32, [512, 512], []),
placeholder: Buffer(placeholder_14: Pointer(int32), int32, [9831], [])}
buffer_map = {placeholder_7: placeholder, placeholder_9: placeholder_1, placeholder_6: placeholder_2, compute_1: compute, placeholder_5: placeholder_3, placeholder_8: placeholder_4} {
for (i0.outer.i1.outer.fused: int32, 0, 1024) "parallel" {
attr [compute_3: Pointer(float32)] "storage_scope" = "global";
allocate(compute_3, float32, [256]) {
for (nb_j.inner: int32, 0, 2) {
for (i.inner.init: int32, 0, 8) {
for (j.init: int32, 0, 16) {
compute_3[(((i.inner.init*32) + (nb_j.inner*16)) + j.init)] = 0f32
}
}
for (elem_idx: int32, 0, ((int32*)placeholder_11[(((floormod(i0.outer.i1.outer.fused, 16)*2) + nb_j.inner) + 1)] - (int32*)placeholder_11[((floormod(i0.outer.i1.outer.fused, 16)*2) + nb_j.inner)])) {
for (i.inner: int32, 0, 8) {
for (j: int32, 0, 16) {
compute_3[(((i.inner*32) + (nb_j.inner*16)) + j)] = ((float32*)compute_3[(((i.inner*32) + (nb_j.inner*16)) + j)] + ((float32*)placeholder_10[((((int32*)placeholder_11[((floormod(i0.outer.i1.outer.fused, 16)*2) + nb_j.inner)]*16) + (elem_idx*16)) + j)]*max((float32*)placeholder_12[(((floordiv(i0.outer.i1.outer.fused, 16)*4096) + (i.inner*512)) + (int32*)placeholder_14[((int32*)placeholder_11[((floormod(i0.outer.i1.outer.fused, 16)*2) + nb_j.inner)] + elem_idx)])], 0f32)))
}
}
}
}
for (i0.inner: int32, 0, 8) {
compute_2[ramp((((floordiv(i0.outer.i1.outer.fused, 16)*4096) + (i0.inner*512)) + (floormod(i0.outer.i1.outer.fused, 16)*32)), 1, 32)] = max(((float32x32*)compute_3[ramp((i0.inner*32), 1, 32)] + (float32x32*)placeholder_13[ramp((((floordiv(i0.outer.i1.outer.fused, 16)*4096) + (i0.inner*512)) + (floormod(i0.outer.i1.outer.fused, 16)*32)), 1, 32)]), broadcast(0f32, 32))
}
}
}
}

下载 Python 源代码:tune_sparse_x86.py

下载 Jupyter Notebook:tune_sparse_x86.ipynb